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Abstract. We study permutation-type solutionsrtesimplex equations, that is, solutions whose

matrix form can be written aR{l“;i” =Tloct Bi‘“ﬂ_ R with somen x n matrix A and vector
BigtBy

B, both overZp. With this ansatz thed""+1 equations of the-simplex equation reduce to a
[%n(n +D+1]x [%n(n + 1) + 1] matrix equation oveZp. We have completely analysed the
2-, 3- and 4-simplex equations in the genekficcase. The solutions show interesting patterns
that seem to continue to still higher simplex equations.

1. Introduction

The Yang-Baxter equation (YBE, or 2-simplex equation) is the fundamental equation of
solvable models iril+ 1) dimensions. For lattice models it guarantees the commutativity of
the transfer matrix, and for particle scattering it implies solvability through the factorization

of the scattering matrix [1, 2]. Therefore, in order to construct interesting solvable models
one needs interesting solutions. For this reason the YBE has been studied extensively and
indeed many solutions are known [1, 3], especially in the two-state case [4].

When one tries to generalize these solvable modelg2te- 1) dimensions, either
by considering three-dimensional lattices or the scattering of straight strings, one obtains
Zamolodchikov's tetrahedron equation (3-simplex equation) as the fundamental equation
[2,6], whose solutions are needed for further development. Unfortunately only a few
solutions are known for this equation [5—9] and when one proceeds to still higher dimensions
and to the corresponding higher simplex equations very little is known.

The difficulties associated with these equations come mainly from sheer numbers, the
D-staten-simplex equation is actually a set &f'"+1 equations onD?* variables (in the
nonconstant casé: + 1) D?* variables). Because of this, one is forced to make a rather
restrictive ansatz in order to obtain any solutions at all. One method is to take some definite
high-level structure (Lie algebra, chiral Potts) coming from somewhere else and apply it
to the present situation. Our approach is complementary to this, the ansatz given below is
defined in rather simple terms and we will then deterrafiesolutions within this class.

Let us recall the standard set-up for thesimplex equations. As usual we assume that
we have linear operator® which for then-simplex case are assumed to act on a product
of n identical vector spaceg, i.e. R : V& — V&' Lete; be theD basis vectors of/.

Since we want to perform algebra with the indices of the basis vectors it would be nice
if the indexing formed a finite field. D was a prime this would be possible wilty,,

1 E-mail address: hietarin@newton.tfy.utu.fi
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integers moduld, which is what we consider in this paper. However, some aspects of the
following derivation work even if the indices just form a ring, for example with
To the operatofR we associate a humerical matrix withpairs of indices by

R, ®...Q¢,) = R (€, ®...®e¢€j). Q)

i1...0p
(Here, and elsewhere, in this paper, summation over repeated indices is assumegk) The
simplex equation itself is defined an®l*+b/2l ‘and the linear operators operate trivially in
all but then spaces indicated by the subscripts, ®ga(e;, ®e¢;, Qe;,) = R/ (e, ®e¢j,Qei,),
or in the general case witk, € {1,... N}, N = %n(n + 1),

N
Jiedn _ pJki-Jkn Jk
(RKlmKn)il...iN - Rl'Kl...l'K” 1_[ 81'1( : (2)
k=1
k#Ky, Yo

In this paper we consider the first few constant simplex equations, those given by the
2-simplex or vertex Yang—Baxter equation

R12R13R23 = R23R13R12 (3)
the 3-simplex or tetrahedron equation

R123R145R246R 356 = RaseR246R145R 123 (4)
and the 4-simplex equation

R1234R1567R 2589 3680 4790 = Ra790R 3680 2589 1567k 1234 (5)

In terms of the multi-indexed matrices defined in (2) the above operator equations imply,
respectively,

koks pkils plila  _ pkiks pliks plals

Rj2j3 Rj1k3 Rklkz - lejz Rkljs szks (6)
kakske pkaokals pkilals plilals  _ pkikoks plikaks plolaks plalsls

Rj3j5j6 Rjzj4k6 Rj1k4k5 Rk1k2k3 - Rj1j2j3 Rk1j4j5 Rk2k4je Rk3k5ke (7)
1;41f7k9koR1fa/fe{<slo kakslglo pkilslel7 R11121314 _ pkakaksks 11k§k§/<_7R1215k3_k9 Islelgko  plal7lolo (8)
Jajriejo " jajeisko " j2jskske " jrkskek7 " kikokska T TVjijajaja Tkijsjeir keksjsje” kakeksjo ! kakzkgko*

In addition to the above, some other equations have appeared in literature, for example the
Frenkel-Moore equation [10]. For a general formulation of the various types of equations,
see [11].

2. Formulation with the permutation ansatz

In this paper we consider only permutation-type operators, that is those which transform one
product of basis vectors into another simple product. In matrix form this means that there
is precisely one nonzere=(1) entry in each column and row. For th&staten-simplex
equation there aréD")! different matrices to consider, and a brute force check of them is
out of the question except fab = 2, n = 2 which contains 24 permutation matrices (the
next caseg2®)! = 40320 and(3%)! = 362880 might still be possible). We will therefore
make the further assumption that the dependence between the basis velitaarighat

is,

Riei, ®...Q¢i,) = easij+p, &+ ® €asi,+5, )

(where the summation over runs from 1 torn) for some nonsingulat x » matrix A and
n-vector B, both having entries frorZ . In terms of theR-matrix this means that

RIS =80 g S v, = 8(A, B). (10)

i1...0p
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The main advantage of this ansatz is that the problem of solvingistate n-
simplex equation can be reduced to handling ordinary matrices Bygras will be
shown below. This simplifies the problem considerably. Furthermore, although possible
applications normally imply further conditions on the solutions, permutation matrices are
such fundamental objects that there is a good change they are acceptable in most cases, and
we believe that the ansatz is not an unnatural starting point.

In order to write then-simplex equations in terms of and B let us further define (in
analogue with (2))

. AP if i = K,, j = Kz for somea, B

(AKl-uK/x)ij = j . (11)

8 otherwise
(B ) B; if i = K, for somea (12)

A ¢ otherwise

so that
(RKl'“K")lflll:-'lﬁv = l_[ 8(]21(1.“1(")nilf+(BKl...Kn))l (13)
n=1

where now thew summation runs from 1 tov.

In the homogeneous case, that is with= 0, the above correspondence betwé&eand
A means that the-simplex equation with ansatz (10) becomesMx N matrix equation
overZp. For example, the 2-simplex equation becomes

(A12) (A13)] (A23);, = (A29) (A1d){ (A12)), (14)
where Ak, are 3x 3 matrices with entries frorL, as given in (11) (for the explicit form
see (23)).

In the nonhomogeneous case wigh#A 0 a matrix formulation can also be obtained if
we add a fictitious index space 0 and write

n
Jiewdn __ gJ1 Jn Jo _ Jn
Ril...in - aA%ia‘i’BliO e SAﬁio,-FB,,io(Sio - 1_[ 81&\ i, (15)

©n=0

1

When this is immersed in the larger spaces we write the new index as the last one and then
for the n-simplex case we obtain théf(n + 1) + 1] x [3n(n + 1) + 1] matrix

~ A B
Ak, Kk, = |: KB"K” Kli'K"i| . (16)

(We use square brackets when writing out these index matrices.) For example the 2-simplex
equation becomes

A1p Bio || A1z Biz|| A2z B2z | | A2z Bas || A1z Biz || A1z B2 (17)
0 1 0 1 0 1] |0 1 0 1 0 1
and expanding this yields (14) fot and

A12A13B23 + A12B13 + B1p = A23A13B12 + A23B13 + Bos (18)

for B. The higher simplex equations have equally simple matrix form. In fact, formally
the equations now look exactly as in (3)—(5) withinstead ofR, but the interpretation is
different: for A we have ordinary matrix products.
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3. Symmetries

Before starting to solve the equations it is necessary to discuss their symmetries. For one
thing, we only want to list the basic solutions from which the others are obtained by the
allowed transformations. It is well known [8] that thesimplex equations are form-invariant
under discrete transformations of index transposition and index reversal. Now we should
also see if these transformations preserve the linear permutation structure and what they
imply on A and B.

3.1. Index transposition ak

If R/ is a solution of theV-simplex equation, the! R)!*/ := R is also a solution.
Th|s |s easy to see from the structure of the equation.

Let us now see what the above symmetry implies for the index matrix-rom the
definitions above it follows that

n

Jiedn _ _
(IR)u i _1_[ A“,ﬁ+B 1_[ UALig+(IB), (19)
o=

and by comparing the two expressions we find thaRit= 5(A, B) is a solution, then
(IR) = 8(A™1, —A~1B) is a solution, that is(/A) = A™%, IB) = —A~'B.

It is easy to see that this is also an invariance ofAhequation. As a matrix equation it
is clearly invariant under matrix inversion (which furthermore does not change the location

-1 1 a-1
of the inserted pieces of the unit matrix) a[\% lﬂ = [AO Al B]-

3.2. Index reversal oR

It is also easy to see that K/ is a solution thenCR)/*/" := R//* is a solution. We
have

n n

Jieedn __ Jo _ Jo
(CRY;, i = H‘SA:ﬁ g+ But1a 8<CA>azﬂ+<CB>a (20)
a=1 a=1
and the comparison yieIc{SZA)g = AZﬁ:ﬁ, (CB)y = B,11_4, that is, reflection across the

centre of the matrix or vector.

Since theA equation is a matrix equation it is invariant under any permutation of the
set over which the summation is taken: Af solves the equation, thew A)f := A7)
whereo is any permutation operator, is also a solution. However, we have to keep intact
the structure of inserted parts of the unit matrix in the various terms, and then it appears

that only the above reversal is possible.

3.3. Transposition oft

From the point of view ofA the matrix equations have one more discrete symmetry: they
are invariant also under transposition. However, this does not seem to correspond to any
obvious invariance oR. In the following it will turn out that often the transposition of a
solution A is also obtained by the central reflection (accompanied with parameter changes).
However, this is not always true, and when it is not, it turns out that often the accompanying
B will also be different.

This is a rather interesting result from the point of view of studying the structure of
the equations. Normally, imposing an ansatz on the solutions restricts the symmetries,
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because the symmetries of the equation may not be symmetries of the ansatz. In the present
case this happens with the continuous transformation below. However, the opposite can
also happen: in the present case the ansatz leads to a new formulation which has its own
obvious symmetries, and some of these do not seem to have any counterpart at the original
level.

3.4. Gauge transformations

The gauge transformatioR,.x, — (QR)x,..x, = Qx.--- Ok Rky..x,Qk; .- Ok, iS
also an invariance of the-simplex equations. Now thak is made out of delta-functions
the transformation matrix2 must also be of that form, i.e.

Qtj = Slii—&-v (Q_l);( = Si—ljfu_lv u,v € ZLp.
(If D is not prime, u~! is not always defined.) A simple calculation shows that if
R = 8(A, B) is a solution, therQR = §(A, OB), where
(QB)o = uBy + (1= ) Al (21)
14

is also a solution. Thus only can change, and we can in fact put oBg = O, if
> Ag # 1. Later we will find that for many solutions the inhomogenedupart is such
that it can be completely eliminated by this gauge transformation.

In order to understand this as an invariance of equations (14) and (18) we note first that
(14) can be written as
A12A13(1 — Az3) + A12(1 — A13) + (1 — A1)

= A23A13(1 — A12) + A23(1 — Ag3) + (1 — Az3).

If we now sum over the rightmost index of this equation and take its linear combination
with equation (18) we obtain (21) fqrQ B).

Matrix equations are invariant under a much larger group of similarity transformations:

A — O71A0, but now that we have to preserve the structure of having inserted pieces of
the unit matrix intoAg, g, these similarity transformation are allowed only with the matrix

0= [)31 ylﬂ} corresponding to the above.

4. Results for the 2-simplex equation

The details for the Yang—Baxter or 2-simplex case are as follows. In the homogeneous case
we write

lellljzz = Sé]llitlﬂ-bizﬁgl?l-ﬁ-diz (22)
so thatd = | ¢ b and then the 2-simplex equation becomes
c d

a b 07ra 0 b 1 00 1 0 0jra O bra b O
[c d oMo 1 oMo ‘ b]:[o ‘ bMo 1 OM d 0] @9
0 0 11Lec O dJLO ¢ d O ¢c dlLc 0 41JLO0 0 1

(In [12] similar matrices, but with the entries also being matrices, are used to define a
dynamical system.) This yields five equations,

abc=0 bcd =0 be(b—c)=0
b(ad+b—-1)=0 clad+c—-1) =0
whose solutions are discussed below.

(24)
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4.1. D is prime

Recall that we are working with integers moduly the number of states. b is prime
there are no divisors of zero, and we can solve the equations with conventional rules of
algebra. It is easy to show that in this case there are precisely four nonsingular solutions:

@w_|a O @ _ |a 1-ad
w-loa] 5]

@2r) _ a 0 3 _ 01
S PROVR I

Whether these are really different dependsimnNote, for example, that fob = 2 cases
(2) and (2r) reduce to case (1); the same holds with= d = 2 when D = 3. Solution
(2r) is obtained from (2) by central reflection, and there is actually no need to mention it
separately.

When the inhomogeneous paét= [x, y]' is included we have to solve (18), which
amounts to

b(x+ay)=0 c(y+dx)=0 x(c+d—bc—1)=yl@a+b—bc—1). (26)
The solutions then split further and we obtain

a _ |1 O0/x a | a 0] @-Dz
[A|B]; [0 1 y} [A|B]S [0 y (d—l)z:|

(2) a 1—ad‘—az (3) 0 1‘0

(25)

However, we have not yet used the gauge freedom. RoB]S™ and [A|B]S the row

sums ofA are equal to 1, and thus according to (21) we cannot change the inhomogeneous
part, except by an overall multiplication. Fot |[B](21b) the gauged inhomogeneous part will

turn out to be

[(QB)l] _ [(a —D(uz - v)}
(OB): (d—D(uz —v)

and by choosing = uz we obtain(QB); = 0. For [A|B]§2) we obtain similarly

@B)1| | —auz +v(1—d))
QB | | wuz+v@-a |

Now, if d # 1 we can again transform @ B); = 0, but if d = 1 only scaling is possible.
Thus, the final form of the solutions of the 2-simplex case is

10|« a 0]0 0 1]0
L4181, = [o 1y] (41815 = [o do} [AlB](ZS)Z[l oo}

@)_|a l—a| —az @ | a 1l—ad|O0
[AIB]2 [o 1|z ] [A1B]; [o i |0

up to the allowed transformations.

42.D =23

For D = 2 the above vyields basically two solutions for the 2-simplex equatiois, either
the unit matrix (with possible inhomogeneities) or the permutation matrix

w300 e [ e
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wherex, y € Z,. The same five solutions are obtained by a brute force search without the
linearity assumption.

Results (27) work for anyD, but already forD = 3 we obtain other homogeneous
solutions, including triangular ones:

oo [52] [o2 [53 [63

and their reflections.

43.D=4

The situation is quite different iD = 4, because of divisors of zero:-2 =0 (mod 4.
In addition to the above generic solutions, we obtain new base solutions

1 2 (1 2 1 2 (3 2 3 2 3 2

0 1 12 1 2 3 |0 3 2 1 2 3
and their reflections. When the inhomogeneous parts are added we obtain

[1 2|0 1 2| y+2x+gx 1 2|0

| 0 1] 2 2 1 y+gx 2 3|
(3 2 | 2 3 2| 3 2|y+
| 0 3|0 2 1|0 2 3| y ’
In the second solution there is no obvious way to fix the gauge paragetad it has been
left open.

Thus for 4-state models there seem to be additional symmetries and solutions, and
perhaps this case needs to be studied in more detail.

5. Results for the 3-simplex equation

Higher simplex equations have many reductions to lower simplex equations, and it is not
necessary to repeat them. For example, any solutions of the 2-simplex equation generates
a solution of the 3-simplex equation R = R;;8x or §;Rjx. These solutions (and those
with detA = 0) will not be included in the following list and the solutions below are
genuine 3-simplex solutions. Note also thf, = R;8; (with § on the central index) is
not automatically a solution, in particular the permutation maRj)"* = 5/°5/2s/* does
not solve the tetrahedron equation.

In order to solve the tetrahedron equation under the present ansatz we first consider the
homogeneous part. The equation to solve is just like (4) but Rittreplaced byA. When

the matrix
a b ¢
o
u v w

is inserted into the 6& 6 matrix AKIKng the six different ways indicated in (4) and we
compute the corresponding matrix product we find 29 equations:

abx =0 bxy =0 vyz =0 vwz =0

bx(b—x)=0 vz(v—2)=0 y(bu —cv) =0 y(—cx +uz) =0
bay+b—-1)=0 x(ay+x—-1)=0 Z(wy+z—-1) =0 viwy+v—-1)=0
abuz +acx +bcu =0 bvxz +cvy+cxy=0 buwz 4+ cuz + cow =0
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abu + acvx + cux =0 buy + bvxz +uyz =0 cuv + cvwx +uwz =0
abwz + acz + bcw +¢? =0 auv + avwx + u® + uwx =0

buvz + cuy + cv®> —cvz =0 buxz — bex + cuy +¢cx?> =0

—b%u — bevx + bux — cuy =0 —cuy —cvxz +uvz —uz? =0

bwxz +cwy +cxz+cz—c=0 abvz +acy +bcv+bc—c=0

—auy —avxz —uxz —ux +u =0 — buv — bvwx —uv —uwy +u =0

—bcu + bu’z — c?vx + cuv + cux — cuz = 0.

By just considering the first four equations the problem can be split into nine different cases,
and each one of them can then be solved rather easily. After eliminating those solutions that
reduce to 2-simplex solutions and those with noninvertiblere find three basic solutions

from which others are obtained by the allowed transformations. These solutions and their
nonhomogeneous additions will be discussed below.

5.1.

The first base solution is

0 1 —d
ALY = [1 0 1}

0 0 d
and when inhomogeneities are added it splits into two:
01 -1]«x 01 -d|o
[ABl3=| 1 0 1]y [AB]Y” = 1 0 1|0
00 10 00 d|0

For [A|B]§ x or y can be still eliminated by a gauge transformation, fatg]S"” the
gauge freedom has already been used above.

The transpose of4‘31) is not obtained by central reflection and therefore constitutes
another solution:

0 1 0]0 0 1 0|0
[AIB]=| 1 0 0|0 [AIBIS” =] 1 0 0|0
-1 1 1|z ~d 1 d|0

These forms cannot be changed by gauge, except-byuz.

5.2.

There are two upper triangular solutions

a 1—ab a(bc—-1) a 1—ab c(ba—1)
Ag"):[o b 1—be ] A§2’)=|:O b 1—be }
0 0 c 0 0 c

They differ only in the upper right-hand entry and are related by transposition and central
reflection (followed bya <« ¢). But since transposition is not a symmetry of the
inhomogeneous part they have to be analysed separately.

Depending on which parameters have unit value we obtain three solutions:

1 1-b b-1|
[AIBIY =| 0 b 1-b| bz
0 O 1] z
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” a 1-b a(b l) ‘ abz
[AIBIY” =| 0 b b |-
(0 o0 1|z
[a 1—ab a(bc—1)|0
[AB]? =] 0 b 1-bec |0
0 o c |0

This solution illustrates well how added freedomAndecreases freedom iB.
For the transposef’) we obtain two solutions

[ a 1-—a —1‘x
[ABIYY =] 0 1 0 |y
0 0 10
[a 1—ab c(ba—1)|0
[AIBIF? =| 0 b 1-bc |0
0 0 c |0

5.3.
For the next solution the inhomogeneous terms can always be gauged away and we have

a 0 0 |O
[AIB]Y =| 1—ab b 1—bc |0
0 0 ¢ |O

Here we have assumed that at least one,®f ¢ is # 1, else we obtain a diagonal solution
with arbitrary B.
The transpose is again a separate case, we obtain first

a 1—ab 0‘ —ay
[ABI"=| 0 b O]
0 1-bc c|—cy

Now if b # 1, the inhomogeneous part can be eliminated, and we finally have two solutions

a 1-a 0| —ay a 1-ab 0|0
[AIBIY”=| 0 1 0] y [ABI$” =] 0 » 0|0
0 1-c c¢|—cy 0 1-bc c|O

Note how this case is built up from 2-simplex solution ]®’, but not as simple tensor
products.
54.D=2

When all indices are modulo 2 only two solutions remain (in addition to reducible ones),
namely

01 1/0 01 0[0
10 1)y 1000
00 1/0 11 1)y
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wherey € Z; and we have used the gauge freedom to elimimatén the first case. Here
it might be useful to record the correspondiRgmatrices fory = 0:

. . 1. 0. 1

. . . e T |

These bear some resemblance with known solutions [5-8].

6. Results for the 4-simplex equation

For the 4-simplex case, the x4 4 index matrix is embedded into 10 10 matrices in
four ways. The equations resulting from (5) were solved using the Groebner package
of REDUCE [13]. From the results we eliminated those solutions for whictvas in
a block form corresponding t&k’s with tensor products formR/*2">* = gt pr/252

P PR . P P . . 1l2[3l4 ll l2[3l4
RIVEBI — paBsts or RIVARI — g U2 B304 where M is a solution of the 3-simplex

1021314 111213 "4 11121314 102 "7 1314 o A T
equation andK, L of the 2-simplex equation. From the remaining list we eliminated all
cases obtained from the basic ones by central reflection or by inverse, and those with singular
A. Furthermore, we considered only the generic case of a pbime

The solutionsA of the homogeneous equation (and their transposes) were next used as

starting points for constructing the nonhomogeneous ParfThen the continuous gauge

freedom was applied to eliminate some freedom frBmThe final result is as follows:

Permutation blocks

6.1.
010 -1|h
101 0fb
000 1|0
001 0|0

After a gauge transformation (21) we would obtd&ih= [b; + v, b, — v, 0, 0] and we could
eliminate eithe, or b,.

6.2.
0 10 0 |0
1 00 0 |0
—a 1 a 1-ab|0
0 00 b |O

In the generic case we obtaB = [0, 0, z(b — 1), —z(ab — 1)] but this can be eliminated
by the gauge transformation. Onlydf= b = 1 would we obtain something that cannot be
gauged away, but in that case the system reduces to a 3-simplex solution.
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6.3.

The transpose of the above solutions is a separate case, and yields

01 -1 0|h 01 -a 0]0
10 1 0b 10 1 00
00 1 00 00 a 00
00 1-b b|0 0 0 1-ab b|0

(whereb; or b, could be gauged away). Again when tHAepart is restricted, thes part
gains some freedom.

6.4.

The next cases are somewhat similar to the above, we obtain

0 1 —a a-1|hb 0 1 —a ab-1|0

10 1 0 |h 101 0 |0

0 0 a 1-a|0 0 0 a 1-ab|O0

00 0 10 00 0 b |0
6.5.

o 1 0 00 o 1 o0 o]0

1 0 0 00 1 0 0 00

—a 1 a 0|0 —a 1 a 0|0

a—1 0 1-a 1|x ab—1 0 1-—ab b|O
6.6.

0 1 —a a ‘ax 0 1 —a ab ‘0

10 1 -1 -x 10 1 -b |0

0 0 a 1-a|—ax 0 0 a 1-ab|O0

00 0 1 | x 00 0 b |0
6.7.

For the transpose of the above nothing can be gauged away, and we obtain

"0 1 0 0/0 o 1 0 o] o
1 0 0 0/0 1 0 0 0 0
1 1 1 0/x 1 1 1 0| —bx

1 -1 0 1]y b —b 1-b b| «x

- 1 0 o]0 o 1 0 0o
1 0 0 00 1 0 0 00
—a 1 a 0|0 —a 1 a 0|0
| a -1 1-a 1|x ab —b 1—ab b|0
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6.8.

The nextA matrix is invariant under central reflection, and gauge transformation changes
nothing. We obtain three different cases

1 1 -1 O\x 1 1 -1 0\0 a 1 -—a O\O
0010\0 0010\0 0010\0
0100\0 0100\0 0100\0
o -1 1 1\y 0 —d 1d\y 0 —d ld\O

6.9.

For the transpose of the above the inhomogeneous part is quite different and we obtain

1 0O 0\ x a 0 0 O \O
1 0 1 —1\ y 1 0 1 —d\O
-1 1 0 1\—x -a 1 0 1 \O
0O 0O 1\—y 0O 0 0 d \O
In both cases there are two free parameters.
6.10.
a 1 —a a |0 a 1 —a ad |0
0 0 1 —1\0 0 0 1 —d\o
01 O 1\y 01 O 1\0
0 0 O 1\0 0 0 0 d \0

Triangular blocks

6.11.

1 1-» b—1 1-b|0 a 1—ab clab—-1) cd(l—ab) |0

0 » 1-b b-10 0 b 1—bc dbc—1) |0
0 0 1 0 \x 0 0 c 1-cd \0
0 0 0 1 \0 0 0 0 d \0

6.12.

1 0 0 0\ x 1 0 0 0\ x
1-b b 0 O\—bx 1-b b 0 O\—bx
b—1 1—-b 1 0| y b—-1 1-b 1 0| v

| 1-b b—-1 0 1] : dl—b) db—-1 1—d d| —dy

[ 1 0 0 O\ x
1-b b 0 0\—xb
cb—1) 1-bc c 0| cbx

| c1-b) (bc—-1) 1l-c 1\ y
[ a 0 0 0\0
1—ab b 0 0\0
clab — 1) 1—bc ¢ 0/0
| cd(l—ab) dbc—1) 1l—cd d\O
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6.13.

A detailed analysis of this case leads to some subcases that are identical to those of central
reflected (section 6.2.2) and are not repeated here.

a 1-—ab ab-1) a(l-b)|0
0 b 1-b (-1 |0
0 o0 1 0 |y
_O 0 0 1 ‘0
[ a 1—ab abc—1) ad(l—bc) 0
0 b 1-—bc dibc—1) | 0
0 0 c 1—cd 0
0 0 0 i 0
6.14.
a 1l—ab O 0 0
0 b 0 0 0
0 1-bc ¢ 1-cd |0
0 0 0 d |0
6.15.
1 1-» -1 O‘ X a 1—a a-1 0‘0
0 b 1-b 0| -bz 0o 1 0 o0y
0o 0 1 0 z 0 0 1 00
|0 0 1-d d|-de 0 0 1-d d 0
(a4 1—ab cab—1) 0|0
0 b 1-—bc 00
0 o0 c 00
(0 0  1-cd d|0
6.16.
a 0 0 o0 |0
1-ab b 0 0 |0
clab—1) 1—bc ¢ 1-cd |0
0 0 0 d |0
6.17.
a 1—ab a(b—-1) 0| abx a 1—ab a(c—1) 0|0
0 b 1-b 0f-bx 0 b5 1-bc 0|0
0 o0 1 0 «x 0 0 c 00
0 0 1-d d|-—dx 0 0 1-cd 4|0
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6.18.
T 0 0 0| x
1-b b 0 0 |  —xb
bc—1 1—bc ¢ 1—c|—x(1—bc)—cy
o 0 0 1 | y
[ a 0 0 0 0
1—ab b 0 0 0
albc—1) 1—bc ¢ 1—cd |0
o 0 0 d |0

6.19.

Here and in the following case we have rational entries in the index matrix.

a 1l—a 0 0|0 a 1—ab 0 0|0
0 1 0 0|0 0 b 0 0|0
0 0 1 0| x 0 0 1/b 0/0
| 0 d—1 1-d 4|0 0 d—b 1-d/b d|O
6.20.
[ a 0 O 0 0
l1—ab b O d—b |0
0 0 Yb (b—d)/b|0
| O 0 O d 0
6.21.D = 2.
For D = 2 we have the following new solutions
[0 1 0 1|0 [0 1 1 1/07]
1 01 0|0 1 01 1|0
0 00 1/0 0 0 1 0/0
| 0 0 1 0]0 | | 0 0 0 1|0 |
1 1 1 0|0 1 1 1 1/0 ]
0 01 0|0 0 01 1|0
0 1 0 0|0 0 1 0 1/0
| 01 1 10 | | 0 0 0 1/0 |

7. Discussion

In presenting this (complete) set of linear permutation-type solutions for the 2-, 3- and
4-simplex equations we hope that some of them could be used in other studies. These
applications may require further conditions, but we believe that permutation-type solutions
are so benign that they should satisfy these conditions, if just independence of any spectral
parameter is acceptable.

Another hope is that the solutions can teach us something about the equations
themselves. One observation in that direction is that some of the solutions fall into patterns
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2
2

that seem to continue to any For exampleA;”, Af” and section 6.2.4 start a pattern

that seems to continue as

rfa; l—aqa, O 0 0 7]
0 az 0 0 0
0 1- azaz  as 1- asaq 0
0 0 0 as 0
0 0 0 1- dagds  ds

This band structure could make sense even as an infinite matrix, and perhaps we should
soon start to think what kind of object thec-simplex’ equation might be.
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